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Linear instability of annular Poiseuille flow
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The linear stability of flow along an annular pipe formed by two coaxial circular
cylinders is considered. We find that the flow is unstable above a critical Reynolds
number for all 0 < η � 1, where η is the ratio between the radii of the inner and outer
cylinders. This contradicts a recent claim that the flow is stable at all Reynolds
numbers for radius ratio η less than a finite critical value. We find that non-
axisymmetric disturbances become stable at all Reynolds numbers for η < 0.11686215,
and we are able to study this ‘bifurcation from infinity’ asymptotically. However,
axisymmetric disturbances remain unstable, with critical Reynolds number tending
to infinity as η → 0. A second asymptotic analysis is performed to show that the
critical Reynolds number Rec ∝ η−1 log(η−1) as η → 0, with the form of the mean flow
profile causing the appearance of the logarithm. The stability of Hagen–Poiseuille
flow (η = 0) at all Reynolds numbers is therefore interpreted as a limit result, and
there are no annular pipe flows which share this stability.

1. Introduction
Annular Poiseuille flow (APF), the flow between two coaxial circular cylinders

driven by an axial pressure gradient, provides an interesting problem in hydrodynamic
stability theory and has been studied or discussed several times over the years (Mott
& Joseph 1968; Mahadevan & Lilley 1977; Garg 1980; Landau & Lifshitz 1987;
Cotrell & Pearlstein 2006). APF is a special case of ‘thread–annular flow’, a flow
with medical applications, and some results on APF stability can also be found
in this context (see Walton 2005, and references therein). In addition to the basic
wish to understand the properties of APF, a further reason for the interest in APF
is that the narrow-gap limit of APF recovers plane Poiseuille flow, whereas the
wide-gap limit recovers Hagen–Poiseuille flow (HPF), so APF connects these two
important canonical flows. The relation to HPF provides some additional motivation
for investigating the stability of APF, which is the main subject of this paper. We
note that several previous studies have given rational asymptotic insight into HPF
stability using various different approaches. These include studies of entry flow in a
circular pipe (Smith & Bodonyi 1980), flow in non-circular pipes (Smith 1979a, b;
Davey & Salwen 1994; Kerswell & Davey 1996) and nonlinear stability theory (Smith
& Bodonyi 1982).

Mott & Joseph (1968) considered axisymmetric disturbances to APF and found
these disturbances to be linearly unstable. They computed the critical Reynolds
number Rec for axisymmetric instability in the range 0.3 � η � 1, where η is the ratio
of the radii of the inner and outer cylinders. Mott & Joseph’s critical Reynolds
number increases monotonically between η = 1 (the plane Poiseuille-flow limit) and
η =0.3, and they conjecture that it will continue to increase, and indeed blow up, as
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η → 0 (the HPF limit). Mott & Joseph thus conclude that ‘the absolute stability of
Hagen–Poiseuille flow is evidently a limit result’. Landau & Lifshitz (1987, § 28) come
to a similar conclusion, although they do not present detailed arguments. Whether
the stability of HPF is recovered in this way as a limit result of APF as η → 0 is
uncertain for two reasons. (i) Mott & Joseph’s conjecture is extrapolated from fairly
limited data (0.3 � η � 1). (ii) Since there is no analogue of Squire’s theorem in the
cylindrical geometry of APF, non-axisymmetric disturbances must also be considered.

Non-axisymmetric stability computations were first performed by Mahadevan
& Lilley (1977) and Garg (1980), who both found that the non-axisymmetric
disturbances are more unstable than the axisymmetric ones for small η. As part
of a study of the topology of the neutral curves of spiral Poiseuille flow, Cotrell
& Pearlstein (2006) have given further APF calculations confirming this. Cotrell &
Pearlstein’s data extend down to η =0.12, for which the critical Reynolds number
Rec = 205 486; this is the smallest value of η and the largest value of Rec to date.
For η less than approximately 0.4, Cotrell & Pearlstein find that disturbances with
azimuthal order m =1 are the most unstable, and that Rec increases rapidly for
decreasing η. Further, Cotrell & Pearlstein (2006) conclude from their data that Rec

will blow up to infinity at a finite value η � 0.115, and that for η smaller than this
value, APF is absolutely stable at all Re. This conclusion disagrees with the ‘limit
result’ conclusion of Mott & Joseph. If true, Cotrell & Pearlstein’s conclusion implies
an extended class of annular pipe flows which are absolutely stable (i.e. stable for all
azimuthal orders), and that HPF can be viewed as one member of this class.

The motivation for the present paper is therefore to investigate the conclusions of
Mott & Joseph (1968) and Cotrell & Pearlstein (2006) using asymptotic arguments. If
Rec blows up as η → 0, as asserted by Mott & Joseph, then we might hope to confirm
it by describing the process asymptotically. If instead, Rec blows up at a finite value
of η � 0.115, as asserted by Cotrell & Pearlstein, then we might hope to confirm this
by asymptotic arguments. In addition, we shall give further numerical calculations,
which extend to smaller η and larger Re than the previously published data, with
which to compare and assess the asymptotic results.

We find that the non-axisymmetric disturbances do become stable at all Re for η

less than a finite critical value, approximately equal to the value found by Cotrell &
Pearlstein (2006). This process occurs as a ‘bifurcation from infinity’ at the critical
value of η and closely follows the behaviour found by Cowley & Smith (1985), who
studied the stability of flow intermediate between plane Poiseuille and plane Couette
flows. An asymptotic analysis for η close to criticality near the bifurcation point is
possible, and we find that this quantitatively recovers the results for Rec obtained in
our numerical calculations. However, axisymmetric disturbances do not possess this
bifurcation, and instead our numerical calculations indicate that they remain unstable
with Rec → ∞ as η → 0. This is confirmed by a second asymptotic analysis performed
for η close to zero, which again is able to quantitatively recover the numerical results.
The good agreement between our asymptotic and numerical results suggests that a
correct description of the APF stability properties is obtained. We infer that Cotrell &
Pearlstein’s conclusion is incorrect, and that, in fact, APF is unstable above a critical
Reynolds number for all non-zero η, in agreement with Mott & Joseph’s conclusion.

The remainder of this paper is organized as follows. In § 2, we give the governing
equations and present the results of our numerical stability computations. In § 3, we
consider non-axisymmetric disturbances and give the asymptotic description of the
blow-up of Rec at finite η. In § 4, we give an alternative asymptotic treatment for
axisymmetric disturbances in the limit η → 0. Finally, the results are discussed in § 5.
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2. Governing equations and numerical calculations
2.1. Problem formulation

Incompressible fluid is confined between two coaxial circular cylinders and driven by
a constant axial pressure gradient. The problem is non-dimensionalized by scaling
lengths with the gap width, scaling velocities with the averaged axial velocity, and
scaling densities with the constant fluid density.

Working in cylindrical polar coordinates (x, r, θ) aligned with the axis of the
cylinders, the steady mean flow is APF and is given by

U (r) = 2
(1 − r2(1 − η)2) log η − (1 − η2) log(r(1 − η))

1 − η2 + (1 + η2) log η
(2.1)

for
η

1 − η
� r �

1

1 − η
, (2.2)

where η < 1 is the radius ratio of the cylinders.
The linear stability equations are obtained by introducing a small disturbance

velocity (u, v, w)eimθ+ikx−iωt and disturbance pressure peimθ+ikx−iωt . The wavenumbers
m and k are assumed real, with m an integer, and the complex amplitudes u, v, w

and p are functions of radius r . The linearized Navier–Stokes equations become

i(Uk − ω)u + vU ′ = −ikp + Re−1

[
u′′ +

u′

r
−

(
m2

r2
+ k2

)
u

]
, (2.3)

i(Uk − ω)v = −p′ + Re−1

[
v′′ +

v′

r
−

(
1 + m2

r2
+ k2

)
v − 2imw

r2

]
, (2.4)

i(Uk − ω)w = − imp

r
+ Re−1

[
w′′ +

w′

r
−

(
1 + m2

r2
+ k2

)
w +

2imv

r2

]
, (2.5)

0 = iku + v′ +
v

r
+

imw

r
, (2.6)

where prime denotes differentiation with respect to r and Re is the Reynolds number
based on the average axial flow. The boundary conditions for the disturbance are no
slip on the two cylinders,

u = v = w = 0 at r = η/(1 − η), 1/(1 − η). (2.7)

Equations (2.3)–(2.7) define the eigenvalue problem for the complex frequency ω.
For a given pair (η, Re), the flow is said to be unstable if there exist k, m such that
there is an eigenvalue with Im(ω) > 0. As mentioned in § 1, there is no analogue of
Squire’s theorem available for (2.3)–(2.6), so all values of m and k must be considered.
The only available simplification is that we may restrict ourselves to m � 0 and k � 0
by making use of the symmetry properties of (2.3)–(2.6).

Before proceeding to the numerical solution, we note that the system (2.3)–(2.6)
constitutes a sixth-order system. The system is somewhat similar to the stability
equations for planar flows, but it cannot, in general, be simplified into two
decoupled equations in the manner of the Orr–Sommerfeld and Squire equations
for planar flows (Burridge & Drazin 1969; Drazin & Reid 1981; Schmid &
Henningson 2001). For large Re, it is possible to derive six linearly independent
asymptotic solutions of (2.3)–(2.6) in the traditional manner: two of inviscid type
and four of viscous (dominant-recessive) type. Two of the viscous solutions have the
scalings (u, v, w, p) ∝ (1, Re−1/2, Re−1, Re−3/2), and the other two have the scalings
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(u, v, w, p) ∝ (1, Re−1/2, 1, Re−3/2). The six solutions can be derived using these
scalings in the standard way (Drazin & Reid 1981), and can be combined to form
various heuristic approximations for large-Re solutions of (2.3)–(2.6), as described by
Drazin & Reid (1981, § 27). We mention this for completeness, but in this paper we
shall not use these methods of approximation so no further details are given here.

Although we must consider all m � 0, the axisymmetric case m =0 deserves some
special mention. When m = 0, the system (2.3)–(2.6) can be simplified into a fourth-
order system and an uncoupled second-order system similar to the Orr–Sommerfeld
and Squire equations. The governing equation analogous to the Orr–Sommerfeld
equation is given by Corcos & Sellars (1959) as

(Uk − ω)

(
φ′′ − φ′

r
− k2φ

)
+ φk

(
U ′

r
− U ′′

)

=
−i

Re

[
φiv − 2

r
φ′′′ +

3

r2
φ′′ − 3

r3
φ′ − 2k2

{
φ′′ − φ′

r

}
+ k4φ

]
, (2.8)

where φ is the streamfunction for a non-swirling disturbance:

u = r−1φ′(r)eikx−iωt , v = −ikr−1φ(r)eikx−iωt , w = 0. (2.9)

Therefore, the boundary conditions for (2.8) are

φ = φ′ = 0 at r = η/(1 − η), 1/(1 − η). (2.10)

For studying axisymmetric instabilities, the system (2.8)–(2.10) is completely
equivalent to the system (2.3)–(2.7) with m set equal to 0. We shall use (2.8)–(2.10) in
what follows because using the single fourth-order equation simplifies the asymptotic
analysis and also it is easier to compute numerically, making calculations possible at
smaller η and larger Re than are possible using the sixth-order formulation.

2.2. Numerical calculations

The equations (2.3)–(2.6) and (2.8) are discretized with a pseudospectral collocation
method, with the unknown functions represented by Chebyshev polynomials on a
Gauss–Lobatto grid. Using N collocation points, (2.3)–(2.6) are transformed into
a (4N × 4N) matrix equation, whereas (2.8) becomes an (N × N) matrix equation.
A generalized eigenvalue problem is solved to determine the eigenvalues ω for
given η, Re, k, m. The eigenvalue ω with the greatest imaginary part is the primary
eigenvalue, the flow being unstable if its imaginary part is positive. We use MatlabTM

to perform the linear algebra on a standard desktop computer. The generalized
eigenvalue calculation has O(N3) complexity, and typical values of N used were 50 or
100. For cases with larger Re, we found that larger N are required for convergence.

The numerical code is validated by comparison to the results in Cotrell & Pearlstein
(2006, table 1), and excellent agreement is found in each case. As a consistency check
for the cases with m =0, results obtained from (2.8) were compared with results from
(2.3)–(2.6) and the two were found to agree with each other, as well as with the m = 0
data in Cotrell & Pearlstein (2006, table 1).

The spectral code described gives the temporal growth rate of the least damped
eigenmode, and we now use this to locate and track the neutral curve and critical
Reynolds number Rec. We consider each value of m =0, 1, 2, 3, . . . separately in turn.
For each m, we begin the calculation by choosing an initial value of η and then
using a bisection method to locate a pair (Re, k) for which the least damped mode is
neutrally stable. We then use a curve-tracking routine to trace out the entire neutral



Linear instability of annular Poiseuille flow 395

0 0.2 0.4 0.6 0.8 1.0

104

105

106

107

108

109

η

Rec

m = 0

1 2 3

Figure 1. The critical Reynolds number Rec versus radius ratio η for m= 0, 1, 2, 3 (solid
lines). �, m= 0 data from Mott & Joseph (1968, figure 2); �, data from Cotrell & Pearlstein
(2006, table 1). The dashed lines are vertical asymptotes derived in § 3.

curve in the (Re, k)-plane for the given values of m and η. The minimum value of
Re on this neutral curve is found by interpolation, and this is the critical Reynolds
number Rec for the given values of m and η. To compute a value of Rec in this
manner is cumbersome and requires many solutions of the eigenvalue problem, but
the whole procedure need not be repeated. Instead, a small increment is made to
the value of η and a section of the neutral curve near to Rec is traced out in the
(Re, k)-plane for the new value of η, using the data from the previous step as an
initial guess. This process is much quicker and can be repeated many times, giving
the variation of Rec and kc (the critical axial wavenumber) with respect to η.

The results of the numerical calculations are given in figure 1, which shows Rec

plotted against η for m =0, 1, 2 and 3. Both the m =0 data from Mott & Joseph
(1968, figure 2) and the data from Cotrell & Pearlstein (2006, table 1) are also plotted
in figure 1, to show that our numerical results are consistent with these earlier results.
In the limit η → 1, the mean flow uniformly approaches plane Poiseuille flow and the
minimum critical Reynolds number tends to the value for plane Poiseuille flow (which
is 5772 × 4/3 = 7696 here, owing to the scalings taken). The behaviour at smaller η is
of more interest, however. There is a wide range of η for which the non-axisymmetric
modes are much more unstable than the axisymmetric mode. In this range, figure 1
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Figure 2. For the m= 1 modes, variation of (a) critical Reynolds number, (b) critical axial
wavenumber. �, data points from Cotrell & Pearlstein (2006, table 1 ).

closely resembles figure 4 of Mahadevan & Lilley (1977) and figure 9 of Garg (1980),
both of which are restricted to the range 0.15 � η � 1. Continuing to smaller η, we
find that the axisymmetric mode again becomes the most unstable for η < 0.117. In
the limit η → 0, the axisymmetric mode remains the most unstable, and it appears
that Rec → ∞ as η → 0.

The results of figure 1 therefore seem to contradict the conclusion of Cotrell &
Pearlstein (2006) that APF is stable at all Re for η less than a critical value of
approximately 0.115. Instead, figure 1 tends to support the conclusion of Mott &
Joseph (1968) that Rec → ∞ as η → 0. Figure 2 suggests that the m = 1 modes do have
Rec → ∞ at a finite value of η, in agreement with the finding of Cotrell & Pearlstein
(2006), although because of the axisymmetric instability mode, it does not follow that
APF is absolutely stable for smaller η.

The numerical evidence of this section indicates that the m = 1 modes, and indeed
the other non-axisymmetric modes, become stabilized at finite critical values of η. In
the following section, we confirm this behaviour by performing an asymptotic analysis.
In § 4, we will investigate the m = 0 modes as η → 0, and confirm the suggestion that
Rec → ∞ in this limit, by performing a different asymptotic analysis.

3. Asymptotics for non-axisymmetric disturbances
Figure 2 strongly suggests that the m =1 modes possess a bifurcation in which

Rec → ∞ and kc → 0 at a finite value of η, and we now proceed to analyse this process.
Similar behaviour is found for the other non-axisymmetric modes with m =2, 3, . . . ,
but we shall concentrate on m =1 for this presentation. The starting point for the
analysis is found in figure 3, which shows the neutral curve in the (Re, k)-plane for
two values of η near to the bifurcation, unstable modes existing in the narrow region
enclosed by the neutral curve. The striking feature of figure 3 is that both upper
and lower branches of the neutral curve clearly display the same scaling k ∝ Re−1 for
large Re. On investigating the neutral curves, we find that as η decreases, the two
asymptotes of the upper and lower branches move closer together and the critical
Reynolds number increases. The bifurcation is identified with a radius ratio η∗ for
which the asymptotes of the upper and lower branches become coincident, and the
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Figure 3. The neutral curves for m= 1 and η = 0.15, 0.12. For each case, a circle shows the
critical Reynolds number and axial wavenumber from Cotrell & Pearlstein (2006, table 1).

unstable region between them vanishes. This process is termed a bifurcation from
infinity, and is essentially the same as that studied by Cowley & Smith (1985) for a
different flow.

To determine η∗ we must first determine the location of the upper and lower branch
asymptotes as seen in figure 3. The scalings which we observe numerically on the
asymptotes are

kRe = λ−1
0 ,

ω = c0k,

(u(r), v(r), w(r), p(r)) = (u0(r), kv0(r), kw0(r), k
2p0(r)),

⎫⎬
⎭ (3.1)

where each quantity with a subscript is O(1) as Re → ∞. With these long-wave
scalings, (2.3)–(2.6) reduce at leading order to

i

λ0

(U − c0)u0 +
U ′v0

λ0

= u′′
0 +

u′
0

r
− m2u0

r2
, (3.2)

i

λ0

(U − c0)v0 = −p′
0

λ0

+ v′′
0 +

v′
0

r
− (1 + m2)v0

r2
− 2imw0

r2
, (3.3)

i

λ0

(U − c0)w0 = − imp0

rλ0

+ w′′
0 +

w′
0

r
− (1 + m2)w0

r2
+

2imv0

r2
, (3.4)

0 = iu0 + v′
0 +

v′
0

r
+

imw0

r
. (3.5)

The system (3.2)–(3.5) is a long-wave version of (2.3)–(2.6), with the same no-slip
boundary conditions:

u0 = v0 = w0 = 0 at r = η/(1 − η), 1/(1 − η). (3.6)

Equations (3.2)–(3.6) are a new eigenvalue problem, the eigenvalue for c0 being a
function of λ0, η and m. This eigenvalue problem can be solved numerically using
the same method as described in § 2 for the solution of (2.3)–(2.7). The neutral
curve for this eigenvalue problem, on which max{Im(c0)} = 0, is shown in figure 4
for m =1. For both η =0.12 and 0.15, it can be seen that there are two pos-
sible values of λ0, corresponding to the upper and lower branch asymptotes.
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Figure 4. The neutral curve of the long-wave equations (3.2)–(3.6) for m= 1. The leftmost
point on the curve is η = η∗ = 0.11686215, λ0 = 2.1122 × 10−5, with c0 = 2.7794 × 10−1.

For η = 0.12, we find λ0 = 1.58 × 10−5, 2.66 × 10−5, whereas for η = 0.15, we find
λ0 = 6.83 × 10−6, 3.48 × 10−5. All these values are in good agreement with the
numerically calculated asymptotes in figure 3. As η decreases, figure 4 shows that
the two asymptotes move closer together until for η = η∗ = 0.11686215 they coincide,
meaning that no unstable region is left in the (Re, k)-plane. The value of η∗ derived
from figure 4 is shown by a vertical asymptote in figure 1, as are values for m =2, 3
obtained in the same way.

Following Cowley & Smith (1985), now that η∗ is known, it is possible to proceed
and study the bifurcation asymptotically for 0 <η − η∗ 	 1. It is convenient to
introduce the small parameter δ 	 1 such that

η = η∗ + δ2. (3.7)

This is motivated by the fact that a linear change in λ0 near to the turning point in
figure 4 implies a quadratic change to η. A similar argument holds in the (η, c0)-plane,
so we write

λ = λ0 + δλ1 + δ2λ2 + · · · , (3.8)

c = c0 + δc1 + δ2c2 + · · · . (3.9)

The appropriate wavenumber scaling is found from re-plotting the data of figure 2(b)
on a log–log scale to be

k = δks. (3.10)

The spatial scale and the fast time scale are now determined via k and c, so it
only remains to fix the slow time scale, to account for the slow growth or decay of
disturbance amplitude. Sandwiched in the narrow gap between two branches of the
neutral curve, as shown in figure 3, the disturbance growth rate will be O((λ − λ0)

2)
slower than the fast time. Hence the time and space scales are:

τ = δksct fast time,
T = δ3kst slow time,
X = δksx space.

⎫⎬
⎭ (3.11)
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The scalings of the various quantities all take the same form as for the planar
Poiseuille–Couette flow studied by Cowley & Smith (1985), so the analysis proceeds
in a very similar fashion. The most significant difference is that the system (2.3)–
(2.6) has four dependent variables and leads to more complicated algebra than the
Orr–Sommerfeld equation studied by Cowley & Smith (1985).

For consistency with (3.1), we write the dependent variables as

q =

⎛
⎜⎝

u

(δks)
−1v

(δks)
−1w

(δks)
−2p

⎞
⎟⎠ = q0 + δq1 + δ2q2 + · · · , (3.12)

and for convenience we shall use the independent variable

y = r − η/(1 − η). (3.13)

Using y instead of r means that the domain of the problem is 0 � y � 1 and is
independent of η, which will simplify the definition of the inner product to follow.

The governing equations (2.3)–(2.6) are expanded for small δ as

(L0 + δL1 + δ2L2 + · · ·)(q0 + δq1 + δ2q2 + · · ·) = 0, (3.14)

giving a sequence of problems

L0q0 = 0, (3.15)

L0q1 = −L1q0, (3.16)

L0q2 = −L1q1 − L2q0, (3.17)

...

where the operators L0, L1 and L2 are given in the Appendix.
We restrict attention to solutions which are 2π-periodic in both X and τ . Assuming

q0 ∝ a(T )ei(X−τ ), (3.15) is equivalent to (3.2)–(3.5), so λ0 and c0 take the values already
determined from the leading-order problem and given in the caption of figure 4.

Equation (3.16) requires a solvability condition to be satisfied, so we now define an
inner product by

〈qa, qb〉 =

∫ 2π

0

dX

∫ 2π

0

dτ

∫ 1

0

dy qa
t qb. (3.18)

From (3.16) the solvability condition for q1 is

〈q+
0 , L1q0〉 = 0, (3.19)

where q+
0 denotes the eigenfunction of L+

0 , the adjoint operator with respect to our
inner product (3.18). Now, since λ0 and c0 are known, from (A 3) we can write

L1 = λ1M1 + c1M2 (3.20)

for known operators M1, M2. The solvability condition (3.19) then becomes

c1 = f λ1 for f ≡ −〈q+
0 , M1q0〉/〈q+

0 , M2q0〉. (3.21)

Since we wish the fast time variable τ to describe harmonic variation of q but not slow
growth of the amplitude (which is governed by the slow time T ), all the coefficients ci

in (3.9) must be real. As a consequence f = c1/λ1 is necessarily a real quantity. With
the solvability condition satisfied, the solution of (3.16) is

q1 = λ1 Q1 for L0 Q1 = (−M1 − f M2)q0. (3.22)
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Note that Q1 is derived from known quantities and so is calculable, but λ1 and q1

are still undetermined.
From (3.17), the solvability condition for q2 is

〈q+
0 , L1q1 + L2q0〉 = 0. (3.23)

Now we use (A 4) to write

L2 = −λ−1
0

(
λ2

1 − λ0λ2

)
M1 +

[
i(λ−1

0 λ1c1 − c2) + ∂T

]
iM2 + k2

s M3 + M4, (3.24)

where M1, M2 are as before and M3, M4 are two more known operators. After some
algebraic manipulations, which are omitted for brevity, the solvability condition (3.23)
yields the following condition on the slow growth of the amplitude:

Re

(
1

a

∂a

∂T

)
= λ2

1Re

(
i〈q+

0 , (M1 + f M2) Q1〉
〈q+

0 , M2q0〉

)
+ k2

s Re

(
i〈q+

0 , M3q0〉
〈q+

0 , M2q0〉

)

+ Re

(
i〈q+

0 , M4q0〉
〈q+

0 , M2q0〉

)
(3.25)

= λ2
1μ1 + k2

s μ2 + μ3. (3.26)

The μ1, μ2, μ3 are given in terms of determined quantities, and so are calculable.
Setting the left-hand side of (3.26) to zero gives the asymptotic location of the neutral
curve, and by using (3.7)–(3.10) to eliminate λ1 and ks in favour of η and Re gives
the formulae for the critical Reynolds number and axial wavenumber:

Rec = (kcλ0)
−1, (3.27)

k2
c = −μ−1

2 μ3(η − η∗). (3.28)

The coefficients μ1, μ2, μ3 in (3.26) are computed as follows. First, the values of η∗,
λ0 and c0 are determined from the leading-order problem (3.2)–(3.5) (or equivalently
(3.15)), as in figure 4. The corresponding neutrally stable eigenfunction of L0 is q0.
The adjoint operator L+

0 can be derived in the standard manner, so the corresponding
adjoint eigenfunction q+

0 can also be computed. With knowledge of the numerical
values of η∗, λ0 and c0, all of the operators Mi in (3.21), (3.22) and (3.25) are known,
and so it is possible to compute, in turn, f , Q1 and the μi . We find

μ1 = −1.529 × 107, μ2 = −1.138 × 10−2, μ3 = 1.500 × 10−1. (3.29)

The asymptotic predictions (3.27),(3.28) based on these values are shown by dashed
lines in figure 5. The agreement with the numerical data is very good, so we conclude
that the analysis of this section gives a correct description of the bifurcation for
non-axisymmetric disturbances in APF.

4. Asymptotics for axisymmetric disturbances
The numerical data in figure 1 suggested that the m =0 modes have a critical

Reynolds number Rec → ∞ in the limit η → 0. A closer inspection of the data on
log–log plots reinforces this (see the solid lines on figure 7). It is evident from figure
7 that the scaling of Rec with η is different from the scaling (3.27) for m 
=0, so the
bifurcation studied in § 3 is not present here. This is further confirmed by inspecting
some neutral curves in the (Re, k)-plane: for m 
= 0, the unstable region is confined
to a narrow strip as η decreases (figure 3), but for m =0 the unstable region remains
broad, while migrating to larger Re and larger k (figure 6).
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Figure 5. For m= 1, comparison of the asymptotic predictions (3.27)–(3.29) (dashed lines)
with numerical data (solid lines and circles): (a) critical Reynolds number, (b) critical axial
wavenumber.
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Figure 6. Neutral curves for m= 0 and η = 0.43, 0.20, 0.11, 0.05.

Before commencing our analysis, we note that Mott & Joseph (1968) gave a large-
Re approximation to their m =0 results in the form of a ‘turning-point solution’. The
turning-point solution is one of the heuristic methods of approximation reviewed in
Drazin & Reid (1981, § 27) and is not strictly asymptotic. Although it is instructive,
it cannot give definitive and quantitative information on Rec. Instead, we wish to
attempt an asymptotic analysis based on the limit η → 0. The starting point of the
analysis is to identify the appropriate scalings of Rec, kc and ωc with η. A detailed
inspection of the numerical data for APF with m =0 suggests that

Rec = O

(
log(η−1)

η

)
, kc = O

(
1

η

)
, ωc = O

(
1

η log(η−1)

)
(4.1)

are plausible scalings. Note that the scaling for kc implies that these are short-wave
disturbances. The appearance of log(η−1) in (4.1) is not unexpected because of the
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form of the mean flow (2.1). The numerical data extend only down to η = 0.0015, so
it is impossible to infer from them the correct dependence on log(η−1) with complete
certainty. Our strategy will be to propose scalings for Rec, kc and ωc (below), to be
confirmed a posteriori by comparison to the numerical data.

We now consider the limit η → 0 of (2.8), the governing equation for m = 0
disturbances. The mean flow (2.1) has the form

U (r) = 2
(1 − r2) log(η−1) + log r

log(η−1) − 1
+ O (η) for r = O(1), (4.2)

U (R) = 2
log R

log(η−1) − 1
+ O(η/ log(η−1)) for R =

r

η
= O(1), (4.3)

so there are (at least) two asymptotically distinguished regions to consider. Further,
the form of asymptotic expansions of U suggest that we take

Rec =
R0(log(η−1) − 1)

η
, kc =

k0

η
, ωc =

ω0

η(log(η−1) − 1)
, (4.4)

for some constants R0, k0 and ω0. The forms (4.4) are consistent with the orders of
magnitude (4.1) inferred from the numerical data, but are expected to be preferable:
by using log(η−1) − 1 instead of log(η−1) we expect the relative error in (4.4) to be
O(η) instead of O(1/ log(η−1)).

Consider first the inner region, R = O(1). The leading-order equation in this region
is

(2k0 log R − ω0)

(
φRR − φR

R
− k2

0φ

)
+

4k0φ

R2

=
−i

R0

[
φRR RR − 2φRRR

R
+

3φRR

R2
− 3φR

R3
− 2k2

0

(
φRR − φR

R

)
+ k4

0φ

]
. (4.5)

The inner region includes the inner pipe wall at R =1, where the no-slip boundary
conditions must be applied. Two more boundary conditions arise from the requirement
that the solution of (4.5) matches onto an appropriate solution in the outer region
r = O(1). In the outer region, the numerical solutions show strong exponential decay
with radius, φ ∼ exp(−kcr), so we must have decay as R → ∞ in the inner region. The
boundary conditions for (4.5) are therefore:

φ = φR = 0 at R = 1,

φ → 0 as R → ∞.

}
(4.6)

There are two growing and two decaying solutions to (4.5) as R → ∞, so (4.6)
constitutes four homogeneous boundary conditions. Together, (4.5) and (4.6) therefore
constitute an eigenvalue problem, for example for ω0 as a function of k0 and R0.

Remarkably, the inner region alone determines the leading-order eigenvalue
problem. No matching with the outer region is necessary, and the whole of the
outer region behaves in a passive manner. A numerical solution of (4.5) and (4.6)
is possible using the same pseudospectral collocation technique as described above.
When this is done, a neutral curve, on which max{Im(ω0)} =0, is obtained in the
(R0, k0)-plane. We are interested in the point on this curve with the minimum value
of R0, which is found to be

R0 = 1.3765 × 105, k0 = 1.6681 × 10−1, ω0 = 2.9262 × 10−2. (4.7)
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Figure 7. For m= 0, comparison of the η → 0 asymptotic predictions (4.4), (4.7) (dashed
lines) with numerical data (solid lines): (a) critical Reynolds number, (b) critical axial
wavenumber.

The asymptotic predictions (4.4) with the values (4.7) are shown in figure 7 by the
dashed lines. The agreement with the numerical data is very good, so we conclude that
the scalings and analysis given above are a correct description of the axisymmetric
instabilities to APF for small η. To complete the description, we note briefly that an
analysis of the outer region r = O(1), although not necessary to determine the values
(4.7), could be performed: a multiple scales analysis shows that φ ∼ r1/2 exp(−k0r/η).
In order to apply the correct boundary conditions at the outer pipe wall, this in
turn must be matched onto a solution in a further region: a thin layer in which
1 − r = O(η).

5. Discussion
We have investigated the stability properties of annular Poiseuille flow (APF),

with particular emphasis on the wide-gap limit in which the radius ratio η is small.
We performed numerical calculations of the critical Reynolds number and related
quantities in § 2, extending the range of η and Re significantly beyond that considered
previously.

We find that the disturbances with m 
= 0 display a bifurcation in which Rec → ∞
and kc → 0 at a finite critical value of η. This bifurcation is similar to that considered by
Cowley & Smith (1985), and was studied asymptotically in § 3. The m =0 disturbances,
however, do not follow the same route, and instead they have Rec → ∞ as η → 0, and
this process was studied asymptotically in § 4. For both axisymmetric and non-
axisymmetric modes there is a good quantitative agreement between the numerical
data and the asymptotic predictions, suggesting that the stability characteristics of
APF are correctly mapped out.

We conclude that Mott & Joseph (1968) came to the correct conclusion about
the stability of APF in the limit η → 0, despite the limited range of η they were
able to consider (recall the squares in figure 1), and despite their restriction to
axisymmetric modes. Consequently, we conclude that Cotrell & Pearlstein (2006) are
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incorrect in asserting that APF is stable at all Re for η less than a finite critical
value. This is only true of the non-axisymmetric disturbances, and indeed Cotrell
& Pearlstein’s study correctly discovered the bifurcation of the m = 1 modes at
η � 0.12.

Some special interest is attached to APF because it connects two important
canonical flows: plane Poiseuille flow, as η → 1, and Hagen–Poiseuille flow (HPF), as
η → 0. HPF is recovered point-wise but non-uniformly from APF as η → 0, so the
interpretation of this limit certainly requires a little care (Mott & Joseph 1968 argue
that identifying the limit with HPF is valid because the force per unit length on the
inner cylinder tends to zero). In any case, the question of whether APF is stable is
itself of practical and academic interest. A consequence of our results is that HPF,
long thought (though still without proof) to be stable at all Re, remains an isolated
special case instead of being one member of a class of stable annular flows. For
the spiral Poiseuille flow studied by Cotrell & Pearlstein this implies that the neutral
curve for small values of η has the same topology as for larger η, rather than being
qualitatively different. Although this contradicts a conclusion of Cotrell & Pearlstein
(2006), we believe that their results for η = 0.1 are correct over the range of Re they
consider (Re � 105), and that connection to an axisymmetric Tollmein–Schlichting-like
instability would occur at Re � 106, outside the range of their figures. Concerning the
instability modes of small-η APF, we note that they are localized in r � O(η) as η → 0
(§ 4), so they disappear in the HPF limit. In a similar vein, HPF with superimposed
rigid-body rotation is unstable for arbitrarily slow rotation, with Rec → ∞ as Ω → 0
(Stewartson & Brown 1984; Le Dizès & Fabre 2007). The unstable modes in this
case are localized in r � O(Ω1/2) as Ω → 0, so again they disappear in the HPF limit.
Although the stability of HPF is not robust to small flow distortions of these two
types (weak swirl or the distortion due to a slender centre body), we note that it
is robust to small elliptical deformation of the pipe cross-section (Davey & Salwen
1994; Kerswell & Davey 1996). In fact, fully developed flow in an elliptical pipe
is absolutely stable until the aspect ratio exceeds the relatively large value of 10.4
(Kerswell & Davey 1996).

The author is grateful to Dr S. J. Cowley for helpful discussions relating to this
work, and to Trinity College Cambridge for its financial support.

Appendix A. The operators L0, L1 and L2

L0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ−1
0 (c0∂τ + U∂X)

−∂2
y − φ−1∂y + m2φ−2

λ−1
0 Uy 0 0

0 (L0)11 + φ−2 2imφ−2 λ−1
0 ∂y

0 −2imφ−2 (L0)22 λ−1
0 φ−1im

∂X ∂y + φ−1 imφ−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A 1)

where

φ = y + η∗/(1 − η∗) (A 2)
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and subscripts denote partial derivatives in the standard notation.

L1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ−2
0 λ1(c0∂τ + U∂X)

+λ−1
0 c1∂τ

−λ−2
0 λ1Uy 0 0

0 (L1)11 0 −λ−2
0 λ1∂y

0 0 (L1)11 −λ−2
0 λ1φ

−1im

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A 3)

L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ(c0∂τ + U∂X)

−λ−2
0 λ1c1∂τ

+λ−1
0 (c2∂τ + ∂T + Uη∂X)

+
(∂y − 2m2φ−1)

φ2(1 − η∗)2
− k2

s ∂
2
X

ψUy + λ−1
0 Uη,y 0 k2

s λ
−1
0 ∂X

0
(L2)11

− 2

φ3(1 − η∗)2

−4im

φ3(1 − η∗)2
ψ∂y

0
4im

φ3(1 − η∗)2
(L2)22

imφ−1ψ

− im

λ0φ2(1 − η∗)2

0
−1

φ2(1 − η∗)2
−im

φ2(1 − η∗)2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A 4)
where

ψ = λ−3
0

(
λ2

1 − λ0λ2

)
. (A 5)
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